Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Integrating logic rules with other language features is increasingly sought after for advanced applications that require knowledge-base capabilities. To address this demand, increasingly more languages and extensions for such integration have been developed. How to evaluate such languages? This paper describes a set of programming and performance benchmarks for evaluating languages supporting integrated use of rules and other features, and the results of evaluating such an integrated language together with logic languages and languages not supporting logic rules.more » « less
-
This paper presents a language, Alda, that supports all of logic rules, sets, functions, updates, and objects as seamlessly integrated built-ins. The key idea is to support predicates in rules as set-valued variables that can be used and updated in any scope, and support queries using rules as either explicit or implicit automatic calls to an inference function. We have defined a formal semantics of the language, implemented a prototype compiler that builds on an object-oriented language that supports concurrent and distributed programming and on an efficient logic rule system, and successfully used the language and implementation on benchmarks and problems from a wide variety of application domains. We describe the compilation method and results of experimental evaluation.more » « less
-
Powder X‐ray diffraction (pXRD) experiments are a cornerstone for materials structure characterization. Despite their widespread application, analyzing pXRD diffractograms still presents a significant challenge to automation and a bottleneck in high‐throughput discovery in self‐driving labs. Machine learning promises to resolve this bottleneck by enabling automated powder diffraction analysis. A notable difficulty in applying machine learning to this domain is the lack of sufficiently sized experimental datasets, which has constrained researchers to train primarily on simulated data. However, models trained on simulated pXRD patterns showed limited generalization to experimental patterns, particularly for low‐quality experimental patterns with high noise levels and elevated backgrounds. With the Open Experimental Powder X‐ray Diffraction Database (opXRD), we provide an openly available and easily accessible dataset of labeled and unlabeled experimental powder diffractograms. Labeled opXRD data can be used to evaluate the performance of models on experimental data and unlabeled opXRD data can help improve the performance of models on experimental data, for example, through transfer learning methods. We collected 92,552 diffractograms, 2179 of them labeled, from a wide spectrum of material classes. We hope this ongoing effort can guide machine learning research toward fully automated analysis of pXRD data and thus enable future self‐driving materials labs.more » « less
An official website of the United States government
